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1 Proof of Equation (7)
Proof. According to LeSage and Pace (2009, p. 47), the log-likelihood function
of the SLM (2) is:

lnL(ρ;W ) = −n2 ln(2πσ2) + ln det(A)− 1
2σ2 (Ay −Xβ)T(Ay −Xβ) , (SM.1)

where A = In − ρW , as defined in the paper.
If (SM.1) is concentrated with respect to ρ, we have (cf. LeSage and Pace

2009, p. 48):

lnLc(ρ;W ) = −n2 ln 2πe
n

+ ln det(A)− n

2 ln [(MAy)T(MAy)] , (SM.2)

where M = In −X(XTX)−1XT is the projection matrix defined in the paper.
Analogously, the concentrated log-likelihood of model (5) is

lnLc(ρX ;WX) = −n2 ln 2πe
n

+ln det(AX)− n2 ln [(MAXy)T(MAXy)] . (SM.3)

Equation (7) is obtained by subtracting Equation (SM.2) from (SM.3).

2 Proof of Equation (8)
Proof. In case of squared real matrices (as spatial weight matrices are), the
Frobenius norm ‖·‖F is defined as ‖A‖F =

√
tr(AAT), for some A ∈ Rn×n (Horn

and Johnson 2013, p. 341). Thus, properties of the trace of matrices imply that:

‖ρXWX − ρW‖2F = tr ((ρXWX − ρW )(ρXWX − ρW )T) =
= tr ((ρXWX)(ρXWX)T) + tr ((ρW )(ρW )T)− 2ρXρ tr(WXW

T) =
= ‖ρXWX‖2F + ‖ρW‖2F − 2ρXρ tr(WWT

X)
= ‖ρXWX‖2F + ‖ρW‖2F − 2ρXρ tr(WT

XW ) .

Standard matrix algebra permits the following identity to be verified for any
quadratic form:

xTAx = tr(AxxT) .
Thus, the trace tr(WT

XW ) can be seen as the expected value of the quadratic
form uTWT

XWu, where u ∈ Rn is a random vector such that E(u) = 0 ∈ Rn and
E(uuT) = In.
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3 Proof of Equations (10) and (11)
Proof. In order to prove Equations (10) and (11), some preliminary results are
first derived.

Since both W(m) and W(bαmc) are binary matrices, we have that:

W(m)ιn = m, W(bαmc)ιn = bαmc , (SM.4)

where ιn = [1, . . . , 1]T ∈ Rn.
The perturbation Equation (9) in matrix form becomes:

W̃α = A+ [W(bαmc) −A]�B ,

endequation where � is the Hadamard matrix multiplication (that is, the ele-
mentwise multiplication). Just like in case of perturbation (9), Bij ∼ B(1− γ)
for any i 6= j and Bii = 0 for any i, whereas the elements of A are distributed as
Aij ∼ B(bαmic/(n− 1)) if i 6= j, whilst Aii = 0 for any i. Off-diagonal elements
of A are statistically independent from off-diagonal elements of B.

Let define Qn
def= ιnι

T
n−In ∈ Rn×n. From the definition of A and B, it follows

that:

E(A) = (n− 1)−1 bαmcιT
n �Qn , E(B) = (1− γ)Qn ,

thus:

E(W̃α) =E(A) +W(bαmc) � E(B)− E(A)� E(B) =
=(n− 1)−1 bαmcιT

n �Qn + (1− γ)W(bαmc)+
− (1− γ)(n− 1)−1 bαmcιT

n �Qn =
=γ(n− 1)−1 bαmcιT

n �Qn + (1− γ)W(bαmc) , (SM.5)

since Qn � Qn = Qn, and since for any spatial weight matrix W of order n,
W �Qn = W .

Since both W(m) and W(bαmc) are binary matrices based on the nearest-
neighbour criterion, we have that:

(W(m))ij > 0 ⇒ (W(bαmc))ij > 0 if α > 1
(W(bαmc))ij > 0 ⇔ (W(m))ij > 0 if α = 1
(W(bαmc))ij > 0 ⇒ (W(m))ij > 0 if α < 1

and thus:
W(m) �W(bαmc) = W(b(1∧α)mc) . (SM.6)

Moreover, note that:

ιTm = nm̄ , mTm = nm̄(1 + κ2
m) , (SM.7)

by definition of m̄ = 1
n

∑n
i=1mi and κ2

m = 1
nm̄2

∑n
i=1(mi − m̄)2.

Finally, define the following quantities:

dα
def= αm− bαmc , d̄α = n−1ιTdα , (SM.8)
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and note that, since 0 ≤ dα < ιn, the following inequality holds:

0 ≤ d̄α < 1 for any α ∈ R+ (SM.9a)

whereas
d̄α = 0 for any α ∈ N. (SM.9b)

Correlation between the terms of W̃αu and W(m)u requires covariance and
variances to be computed. The rest of the proof is focused on this.

The expected values of the elements of W̃αu and W(m)u is zero, thus the
covariance between them can be computed as follows:

E

(
1
n

n∑
i=1

(W̃αu)i(W(m)u)i

)
= E

(
E

(
1
n

n∑
i=1

(W̃αu)i(W(m)u)i

∣∣∣∣∣ W̃α

))
=

= n−1 E(E(uTW̃T
αW(m)u|W̃α)) =

= n−1 E(tr(W̃T
αW(m) E(uuT|W̃α))) =

= n−1 E(tr(W̃T
αW(m))) =

= n−1ιT
n E(W̃α �W(m))ιn . (SM.10)

From Equation (SM.6) it follows that:

E(W̃α �W(m)) =E(W̃α)�W(m) =
=γ(n− 1)−1 bαmcιT

n �W(m) + (1− γ)W(b(1∧α)mc) =
=γ(n− 1)−1 ΛW(m) + (1− γ)W(b(1∧α)mc) , (SM.11)

where Λ def= diag(bαmc).
Hence, if (SM.11) is substituted in (SM.10), we have:

n−1ιT
n E(W̃α �W(m))ιn =

= γn−1(n− 1)−1 bαmcTm+ (1− γ)n−1ιT
nb(1 ∧ α)mc =

≈ γ(n− 1)−1 (α(1 + κ2
m)m̄2 − m̄d̄α

)
+ (1− γ)

(
(1 ∧ α)m̄− d̄1∧α

)
,

because of (SM.4), and since

ιT
nb(1 ∧ α)mc = (1 ∧ α)ιT

nm− ιT
n ((1 ∧ α)m− b(1 ∧ α)mc) =

= (1 ∧ α)nm̄− nd̄(1∧α) , (SM.12a)
bαmcTm = αmTm− (αm− bαmc)T

m =
= α(m̄2κ2

m + m̄2)− dT
αm ≈

≈ α(1 + κ2
m)m̄2 − m̄d̄α , (SM.12b)

according to (SM.7).
Analogously, the variance of the elements of W̃αu can be computed as follows:

E

(
1
n

n∑
i=1

(W̃αu)2
i

)
= n−1ιT

n E(W̃α � W̃α)ιn .

Note that W̃α � W̃α = W̃α, since W̃α is binary, hence:

E(W̃α � W̃α) = E(W̃α)
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and thus, according to Equation (SM.5) and (SM.12a), we have that:

n−1ιT
n E(W̃α � W̃α)ιn = n−1ιT

n E(W̃α)ιn =
= γn−1ιT

nbαmc+ (1− γ)n−1ιT
nbαmc =

= αm̄− d̄α .

Finally, the variance of the elements of W(m)u can be computed as it follows:

E

(
1
n

n∑
i=1

(W(m)u)2
i

)
= n−1ιT

n(W(m) �W(m))ιn = m̄ .

It is now possible to determine the correlation coefficient between the elements
of W̃αu and W(m)u as it follows:

cor(W̃αu,W(m)u) =
E
( 1
n

∑n
i=1(W̃αu)i(W(m)u)i

)√
E
( 1
n

∑n
i=1(W̃αu)2

i

)
· E
( 1
n

∑n
i=1(W(m)u)2

i

) =

=
γ m̄
n−1

[
α(1 + κ2

m)− d̄α
m̄

]
+ (1− γ)

[
(1 ∧ α)− d̄1∧α

m̄

]
√
α
(

1− d̄α
αm̄

) =

= γ
m̄

n− 1 (1 + κ2
m)
√
α ξ1 + (1− γ)

√
α

max{1, α} ξ2 , (SM.13)

where

ξ1
def=

1− d̄α
(1+κ2

m)αm̄√
1− d̄α

αm̄

, ξ2
def=

1− d̄1∧α
(1∧α)m̄√

1− d̄α
αm̄

. (SM.14)

If d̄α = 0 then ξ1 = 1 and ξ2 = 1, and Equation (SM.13) becomes Equa-
tion (11). Moreover, if κ2

m = 0, Equation (10) is obtained.
Properties (SM.9) permit one to verify that d̄1∧α = 0 if α ≥ 1, hence d̄1∧α =

1{α<1}d̄1∧α (being 1{·} the indicator function). Basic algebra manipulations
permit the following inequalities to be derived:

1 ≤ ξ1 ≤ 1 + κ2
m

1 + κ2
m

(αm̄− 1)−1 ,

1− 1{α<1} (αm̄)−1 ≤ ξ2 ≤ 1 + 1{α>1} (αm̄− 1)−1 ,

for αm̄ > 1, whereas the condition αm̄ ≤ 1 is practically irrelevant.

4 Proof of Equation (13)
Proof. If the binary matrix H ∈ {0, 1}n×n is defined as:

Hij = 1{(W )ij>0} ,

pertrurbation (12) can be restated in matrix form as it follows:

W̃ = V � (Qn −B)�H +W �B , (SM.15)
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where Qn
def= ιnι

T
n − In.

From (SM.15), it follows that:

W̃ � W̃ = V � V � (Qn −B) +W �W �B ,
W̃ �W = V �W � (Qn −B) +W �W �B ,

since (Qn −B)�B = 0. Thus:

E(W̃ � W̃ ) = γ(1 + κ2
V )µ2

VH + (1− γ)(1 + κ2
W )µ2

WH ,

E(W̃ �W ) = γ(1 + κWκV ρWV )µWµVH + (1− γ)(1 + κ2
W )µ2

WH ,

E(W �W ) = (1 + κ2
W )µ2

WH .

Finally we have that:

cor(W̃u,Wu) = n−1ιT
n E(W̃ �W )ιn√

n−1ιT
n E(W �W )ιn · n−1ιT

n E(W̃ � W̃ )ιn
=

= γ(1 + κWκV ρWV )µWµV + (1− γ)(1 + κ2
W )µ2

W√
(1 + κ2

W )µ2
W [γ(1 + κ2

V )µ2
V + (1− γ)(1 + κ2

W )µ2
W ]

=

= γ(1 + κWκV ρWV )η + (1− γ)(1 + κ2
W )√

(1 + κ2
W ) [γ(1 + κ2

V )η2 + (1− γ)(1 + κ2
W )]

.

This completes the proof.

5 Proof of Equations (14) and (15)
5.1 Proof of Equation (15a)
Proof. For the sake of notational convenience, define the following quantities:

aW = 1 + κ2
V aV = 1 + κ2

V aWV = 1 + κWκV ρWV , (SM.16)

and the function g as it follows:

g(γ, η, aW , aV ) = aW
[
γ aV η

2 + (1− γ)aW
]

;

then note that:
∂g

∂η
= 2γ aWaV η .

It is now possible to compute the first derivative of (13) with respect to η as
it follows:

∂

∂η
cor(W̃m̄u,Wm̄u) = ∂

∂η

(
γ aWV η + (1− γ)aW√

g(γ, η, aW , aV )

)
=

= γ aWV g(γ, η, aW , aV )− [γ aWV η + (1− γ)aW ] γ aWaV η
[g(γ, η, κW , κV )]3/2

=

= γ(1− γ) a2
W (aWV − aV η)

(aW [γ aV η2 + (1− γ)aW ])3/2 .

If the previous derivative is set to zero and the equation is solved with respect
to η, optimality condition (15a) is found.
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5.2 Proof of Equation (15b)
Proof. Using notation shortcuts defined in (SM.16), it is possible to compute
the first derivative of (13) with respect to κV as it follows:

d
dκV

cor(W̃m̄u,Wm̄u) = d
dκV

(
γ aWV η + (1− γ)aW√

g(γ, η, aW , aV )

)
=

= γη aW
ρWV κW

[
γ aV η

2 + (1− γ)aW
]
− [γ aWV η + (1− γ)aW ]κV η

[g(γ, η, κW , κV )]3/2
=

= γη(1 + κ2
W ) γη

2(ρWV κW − κV ) + (1− γ)(1 + κ2
W )(ρWV κW − κV η)

[g(γ, η, κW , κV )]3/2
.

If the previous derivative is set to zero and the equation is solved with respect
to κV , optimality condition (15b) is found.

5.3 Proof of Equation (14)
Proof. Correlation (13) is maximised with respect to η and κV if both condi-
tions (15) are satisfied. It follows that if the system of two equations (15) is
solved with respect to η and κV , solution (14) is found.

This can be easily verified if (15a) is substituted in (13), and the result is
maximised with respect to κV :

d
dκV

(
γ aWV η + (1− γ)aW√

g(γ, η, aW , aV )

)
=

= d
dκV

 γ a2
WV a

−1
V + (1− γ)aW√

aW
[
γ a2

WV a
−1
V + (1− γ)aW

]
 = d

dκV

√1− γ + γ
a2
WV

aW aV

 =

=
(

1− γ + γ
a2
WV

aW aV

)−1/2

γ
aWV

aW a−2
V

(κW ρWV − κV ) .

If the previous derivative is set to zero and the equation is solved with respect
to κV , optimality condition (14) is found for κV . If κ∗V = κW ρWV is substituted
in (15a), optimality condition η∗ = 1 in (14) is found.
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